بحبك يا مصر - فريق قياس الجودة - إدارة حدائق القبة التعليمية

ًسعداء بزيارتكم ويسرنا نقدكم ومقترحاتكم...

انضم إلى المنتدى ، فالأمر سريع وسهل

بحبك يا مصر - فريق قياس الجودة - إدارة حدائق القبة التعليمية

ًسعداء بزيارتكم ويسرنا نقدكم ومقترحاتكم...

بحبك يا مصر - فريق قياس الجودة - إدارة حدائق القبة التعليمية

هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

منتديات فريق قياس الجودة - إدارة حدائق القبة التعليمية Q. M. Team H. K. A. Fora


2 مشترك

    قاموس الرياضيات

    ich bin schön sesame
    ich bin schön sesame


    عدد المساهمات : 262
    تاريخ التسجيل : 11/03/2010
    العمر : 28

    قاموس الرياضيات Empty قاموس الرياضيات

    مُساهمة  ich bin schön sesame الجمعة أبريل 16, 2010 11:00 pm

    بسم الله الرحمن الرحيم
    قاموس الرياضيات
    المسح ؛ المساحة : Surveying
    فن استخدام المبادئ العلمية للقيام, بالدقة المطلوبة, بقياس الأراضي وغيرها. وللمسح, بالإضافة إلى هدفه الأساسي أعني القياس, أهداف أخرى منها تعيين مواقع الأراضي ووضع الخرائط لها وإظهار الحدود التي تفصل ما بينها. ونحن نحتاج إلى هذا الفن في تشييد المباني, وشق الطرق, وإقامة الجسور, وحفر القنوات, ومد السكك الحديدية وما أشبه. والمسح قديم. ففي بعض الألواح الطينية السومرية, التي ترقى إلى العام 1400 قبل الميلاد, ما يثبت أن السومريين عرفوا قياس الأراضي وتخطيط المدن ورسم الخطوط التي تفصل ما بين مختلف الأراضي المملوكة.


    المضلع : Polygon في الهندسة, شكل ذو ثلاثة أضلاع (وثلاث زوايا) أو أكثر. يعرف ب- "المثلث" إذا كان ذا ثلاثة أضلاع, وب- "رباعي الأضلاع" إذا كان ذا أربعةعلى رسم بياني بحيث يمثل معادلة Equation أو دالة Function. ومن المنحنيات المستوية: الدائرة, والقطع الزائد Hyperbola, والقطع المكافئ Parabola, والقطع الناقص Ellipse. أما المنحنى الملتوي Skew Curve فهو منحنى لا يقع كله في سطح مستو واحد. ومن الأمثلة عليه اللولب أو المنحنى الحلزوني Helix.


    الموشور ؛ المنثور : Prisme في الهندسة, جسم كثير السطوح قاعدتاه مضلعان متوازيان متطابقان, وسطوحه الأخرى متوازيات الأضلاع. وفي علم البصريات, مجسم من بلور قاعدته مثلثة الأضلاع , إذا مر خلاله الضوء الأبيض "فرقه" بحيث يخرج منه على شكل شريط من ألوان يعرف ب- "الطيف" (را.).

    الميل : Mile

    مقياس للطول يساوي 5,280 قدما, أو 1,760 ياردة, أو 1,609 أمتار وثلث المتر. يستخدم, أكثر ما يستخدم, في الولايات المتحدة الأميركية. في حين تستخدم سائر بلدان العالم - بما فيها بريطانيا التي تبنت النظام المتري مؤخرا - الكيلومتر بدلا منه (را. المقاييس والموازين والمكاييل). وهذا المقياس الطولي, المعروف بالميل التشريعي Statute Mile, مأخوذ عن الميل الروماني القديم المؤلف من ألف خطوة Milia Passuum, كل خطوة منها مقدارها خمسة أقدام, ومن هنا كان طول هذا الميل الروماني نحوا من 5,000 قدم. وقد أقر البرلمان البريطاني اعتماد الميل التشريعي عام 1593


    الميل البحري : Nautical Mile
    مقياس للطول يساوي , في عرف الأميرالية البريطانية, 6,080 قدما, ويساوي في العرف الدولي 1,852 مترا. وكانت الولايات المتحدة الأميركية تعتمد ميلا بحريا خاصا بها يساوي 6,080 قدما وخمس القدم, ولكنها اطرحت هذا الميل البحري الخاص, عام 1959 واعتمدت الميل البحري الدولي.


    النظام العشري : Decimal system
    النظام العددي المألوف, المبني على أساس من الرقم عشرة والمستخدم في العد والحساب في معظم أرجاء العالم. يتألف من عشرة رموز, أو أعداد, فقط هي: 1 و 2 و 3 و 4 و 5 و 6 و 7 و 8 و 9 وصفر. وموقع العدد في هذا النظام هو الذي يحدد قيمته. ففي كل خانة إلى يسار الفاصلة العشرية تزداد قيمة العدد عشرة أضعاف (فكأنه بكلمة أخرى قد ضرب في عشرة) وفي كل خانة إلى يمين الفاصلة العشرية تنخفض قيمة العدد إلى عشرها (فكأنه قد قسم على عشرة). وليس من ريب في أن النظام العشري نشأ نتيجة لاستخدام الناس أصابعه العشرة في العد. والإجماع منعقد على أن الهنود هم مخترعو النظام العشري وعلى أن العرب هم الذين أدخلوه إلى أوروبا.


    النظرية : Theorem
    في الرياضيات, مقولة يمكن إثباتها بالاستنتاج المنطقي من مجموعة من البديهيات أو المسلمات. حتى إذا أثبتت كان في الإمكان استخدامها لإثبات نظريات أخرى وإنشاء " نظام" متكامل من النظريات الهندسية. ومن النظريات الهندسية المعروفة تلك التي تقول إنه إذا تساوى ضلعان في مثلث فإن الزاويتين اللتين تقابلانهما تكونان متساويتين.

    أضلاع, وب- "المخمس" إذا كان ذا خمسة أضلاع, وهكذا. ويسمى المضلع "منتظما" إذا كانت جميع أضلاعه متساوية وجميع زواياه متساوية.

    المعادلة : Equation

    متساوية تحتوي على مجهول أو أكثر ولا تتحقق إلا بقيم محدودة العدد لهذا المجهول. تتألف من طرفين تفصل بينهما علامة التساوي (=). والمعادلة قد تكون هندسية, وقد تكون جبرية. وأنواعها كثيرة منها المعادلة التفاضلية Differential Equation والمعادلة التكاملية Integral Equation و غيرهما.


    المعامل ؛ المسمى : Coefficient
    في الرياضيات, رقم أو أرقام أو رمز جبري يسبق مقدارا مجهولا. والمعامل, أو المسمى, يمثل الرقم الذي يجب أن تضرب به الكمية المجهولة. مثلا: في 6 س تعتبر 6 هي معامل س. وفي الفيزياء, مقدار ثابت, بالنسبة إلى مادة أو عملية ما, في أحوال معينة, يمثل مقياسا لإحدى خصائصها. فنحن نقول مثلا "معامل الاحتكاك" Coefficient of Friction و"معامل تمدد الفلز" Coefficient of Expansion of a Metal وهكذا

    المكعب : Cube في الهندسة, جسم ذو سطوح ستة مربعة متساوية متوازية. حجمه هو حاصل ضرب أبعاده الثلاثة في بعضها. ولما كانت هذه الأبعاد متساوية فإن هذا الحجم يساوي مكعب أي من تلك الأبعاد. أما في الحساب فمكعب العدد هو حاصل ضربه بمربعه: إن مكعب العدد 2 مثلا هو 2 * 4 (أو 2 * 2 * 2) = 8.


    المنحرف ؛ المعين المنحرف : Trapezium
    في الهندسة, شكل ذو أربعة أضلاع ليس بينها اثنان متوازيان (را. أيضا: رباعي الأضلاع).


    المنحنى : Cuve

    خط ليس فيه أي جزء مستقيم. وفي الهندسة يمكن إظهار المنحنى المستوي

    الهرم : Pyramid
    في الهندسة الفراغية, جسم قاعدته مضلع Polygon وأوجهه الأخرى مثلثات تجتمع رؤوسها في نقطة واحدة.


    الهندسة : Engineering
    فن, أو علم, الاستخدام العملي لمعطيات العلوم الدقيقة كالفيزياء والكيمياء وما إليهما. وهي أقسام كثيرة منها: الهندسة الكيميائية وهي تعنى بإنشاء وتشغيل المصانع والأجهزة الضرورية لإنتاج المواد الكيميائية والأصباغ واللدائن والأسمدة. والهندسة الكهربائية وتعنى بإنشاء محطات توليد الطاقة وتطوير الأجهزة الكهربائية كالتلفون والرادار ومكيفات الهواء. والهندسة الميكانيكية وتعنى بإنشاء وتصميم الآلات والأجهزة الجديدة لاستخدامها في مختلف الصناعات. والهندسة الصناعية وهي لا تعنى بأيما صناعة بعينها ولكنها تعنى بتحسين وسائل الإنتاج في الصناعة كلها, و الهندسة المدنية تعنى بإنشاء المباني والطرق والجسور. وهناك أيضا الهندسة الزراعية, وهندسة الطيران إلخ. وقد نشأت مؤخرا " هندسات " جديدة كهندسة الصواريخ والهندسة النووية و غيرهما.

    الهندسة : Geometry
    فرع من الرياضيات يبحث في النقط والخطوط والزوايا والسطوح والمجسمات من حيث قياسها وخصائصها وعلاقة بعضها ببعضها الآخر. أقسامها كثيرة, منها: الهندسة المستوية (را.) والهندسة الفراغية (را.) والهندسة الكروية (را.) والهندسة التحليلية (را.). يضاف إلى هذه الأقسام الهندسة الوصفية, وهي تعنى بإعادة تمثيل الأشكال الفراغية بأخرى مستوية وتعتبر ذات أهمية خاصة بالنسبة إلى فن العمارة. نشأت الهندسة منذ بدأ الإنسان يبني البيوت ويعد الأراضي للزراعة, فعرفها السومريون والبابليون والمصريون والصينيون والهنود, ولكنها لم تزدهر إلا في عهد اليونان على أيدي طاليس و فيثاغورس وأقليدس الذي اشتهرت نظرياته الهندسية باسم " الهندسة الأقليدية ". وبعد اليونان أهملت الهندسة حقبة من الزمان وظلت مهملة إلى أن بعثها العرب من مرقدها وأعادوا إليها مجدها القديم. ومن ألمع نجومهم في هذا الميدان البيروني والكاشي ونصير الدين الطوسي وأبو الوفاء البوزجاني. وفي أوائل القرن السادس عشر عاودت أوروبا اهتمامها بالهندسة. وسرعان ما ظهرت, ابتداء من القرن الثامن عشر, نظريات جديدة شككت في الهندسة الأقليدية. وقد عرف هذا الاتجاه الجديد ب- "الهندسة اللاأقليدية".

    الهندسة التحليلية : Analytic Geometry
    فرع من الهندسة تجري فيه دراسة العلاقات الهندسية بين المنحنيات المختلفة عن طريق علاقات جبرية بين معادلات تمثل تلك المنحنيات منسوبة إلى إحداثيات معينة. اكتشفها كل من رينيه ديكارت وبيير دو فيرما بمعزل عن الآخر

    الهندسة الفراغية : Solid Geometry فرع من الهندسة, يبحث في الأشكال المجسمة كالمخاريط والمكعبات.



    الهندسة الكروية : Spherical Geometry فرع من الهندسة يعنى بدراسة الأشكال المرسومة على سطح كرة.



    الهندسة المستوية : Plane Geometry
    فرع من الهندسة يبحث في الأشكال الواقعة في مستوى Plane واحد. وهذه الأشكال قد تكون خطوطا أو زوايا أو مثلثات مستوية أو دوائر أو مضلعات إلخ.
    الاحتمال : Probability

    في الرياضيات, النسبة بين عدد الحالات الملائمة لوقوع حادث معين ومجموع الحالات الممكنة الأخرى. يعتبر باسكال (1623 - 1662) واضع أسس نظرية الاحتمال, في حين يعتبر جاكوب برنولي ( 1654 ـ 1705 ) صاحب الفضل في تطويرها كفرع من الرياضيات. وإذا كان باسكال قد عني بدراسة "الاحتمال" في ما يتصل بألعاب الحظ, فإن برنولي قد ذهب إلى أبعد من ذلك فعني بدراسة "الاحتمال" في مجالات مدنية وأخلاقية واقتصادية مختلفة. ومن أشهر من توفر على دراسة "الاحتمال" أيضا المركيز دو لا بلاس (1749 - 1827).

    الإحداثيات : Coordinats

    في الهندسة, هي بوجه عام الأبعاد التي يتعين بها موضع نقطة ما على خط أو مستو أو في حيز بالنسبة إلى بعدها عن نقطة ثابتة. وتتألف الإحداثية من عدد واحد إذا كان المراد تحديد موضع نقطة على خط, ومن عددين إذا كانت النقطة على مستو, ومن ثلاثة أعداد إذا كانت النقطة في حيز. وتعرف هذه الإحداثيات كلها ب- "إحداثيات النقطة". أما الإحداثيات الديكارتية Cartesian Coordinates, ويقال لها أيضا "الإحداثيات المتعامدة" , فهي الأبعاد التي يتعين بها موضع نقطة ما بالنسبة إلى المحاور الديكارتية المتخذة.


    الأرقام الرومانية : Romain Numerals

    حروف من الألفباء الرومانية استخدمت لتقوم مقام الأرقام حتى القرن التاسع للميلاد, حين استعيض عنها بالأرقام العربية. وهي تصطنع اليوم في صناعة الساعات وفي رؤوس فصول الكتب ولأغراض التصنيف والتبويب.


    الأرقام العربية : Arabic Numerals ; Arabic Figures

    أرقام هندية الأصل, ترسم على هذه الصورة 1 2 3 4 5 إلخ. أدخلها العرب إلى أوروبا منذ القرن التاسع للميلاد فحلت محل الأرقام الرومانية فيها.


    الإنطاق ؛ حذف الجذور : Rationalization

    في الرياضيات, عملية تحويل الكسر الذي مقامه عدد أصم أو كمية صماء Irrational إلى كسر مقامه عدد منطق أو كمية منطقة Rational (را. أيضا: العدد المنطق).


    التبدلة : Permutation

    في الرياضيات; أي من الصور الممكن تكوينها بتغيير مواقع العناصر التي يتألف منها رقم ما. إن تبادل الرقم 234 مثلا هي 342 324 432 423 وأخيرا 243.


    الجيب ؛ جيب الزاوية : Sine

    في علم المثلثات, نسبة المقابل إلى الوتر. يعني طول الضلع المقابل للزاوية الحادة (وقد رمز إليه في الشكل بحرف P) مقسوما على طول الضلع المقابل للزاوية القائمة, وهو ما يعرف بوتر المثلث ذي الزاوية القائمة Hypotenuse (وقد رمز إليه في الشكل بحرف H). وهكذا يكون جيب الزاوية الحادة مساويا ل- P

    الجيوديسيا : Geodesy

    فرع من الرياضيات التطبيقية, يعنى بالدراسة الجيولوجية لحجم الأرض وشكلها, وقياس أجزاء واسعة من سطحها. ليس هذا فحسب, بل إن الجيوديسيا تدرس التفاوت في الجاذبية والمغنطيسية الأرضيتين أيضا. والجيوديسيا الحديثة تقسم إلى شعب أربع: الجيوديسيا الهندسية والجيوديسيا الطبيعية والجيوديسيا الفلكية والجيوديسيا القمريصنعية, وذلك تبعا للوسائل التي تستعين بها على حل مشكلاتها. ولم تنشأ الجيوديسيا القمريصنعية إلا بعد إطلاق القمر الصنعي الأول عام 1957.

    حساب التفاضل : Calculus

    فرع من الرياضيات العالية ينقسم إلى شعبتين: حساب التفاضل Differential Calculus وهو يعنى في المقام الأول بنسبة تغير الدالات أو الدوال Functions بالقياس إلى متغيراتها المطلقة Variables, وحساب التكامل Integral calculus وهو يعنى بإيجاد التكاملات Integrals وبدراسة خواصها. ينسب استنباط حساب التفاضل والتكامل إلى لا يبنتز ولكن العرب هم الذين مهدوا السبيل لهذا الاستنباط.

    الدالة : Function

    في الرياضيات, كمية تتوقف قيمتها على قيمة كمية أخرى أو كميات أخرى تدعى المتغيرات المستقلة. ومن الأمثلة النموذجية على ذلك حجم الكرة المتمددة الذي يعتبر دالة لأنه رهن بطول شعاع (أو نصف قطر) تلك الكرة, ومقدار الضغط الجوي الذي يعتبر دالة أيضا لأنه رهن بمقدار الارتفاع عن سطح البحر.


    الدائرة : Circle

    شكل مستو محاط بخط منحن مغلق, نقاطه كلها متساوية الأبعاد عن نقطة داخلية ثابتة تدعى "المركز" , ويدعى الخط المنحني المحيط بالدائرة "المحيط" , في حين يدعى الخط المستقيم الذي يقسم الدائرة ومحيطها إلى قسمين متساويين والذي يمر بمركزها "القطر" . و "الشعاع" هو نصف القطر ويعرف بأنه المسافة بين مركز الدائرة وأية نقطة من محيطها. أما الخط المستقيم الواقع بين نقطتين من محيط الدائرة من غير أن يمر بمركزها فيدعى "الوتر". تتألف الدائرة من 360 درجة, وتتألف كل درجة من ستين دقيقة (را. الدقيقة).

    الدقيقة : Minute

    وحدة لقياس الوقت, تساوي 60/1 من الساعة. وهي تتألف, بدورها, من ستين ثانية, وبذلك تساوي الثانية 60/1 من الدقيقة. أما في الرياضيات فالدقيقة وحدة لقياس الزاوية. تتألف الدائرة من 360 درجة, وتتألف كل درجة من ستين دقيقة.



    الدويري : Cycloid

    خط منحن تحدثه أيما نقطة من نقاط محيط الدائرة أو الطارة المتدحرجة في سطح مستو. فإذا دار دولاب دراجة هوائية على طريق مستوية استواء تاما فإن كل نقطة في المحيط الخارجي للدولاب تشكل دويريا منذ أن تمس الأرض أول مرة إلى أن تعاود مسها من جديد, متممة بذلك دورة كاملة. يكون طول الدويري أربعة أضعاف قطر الدائرة أو الطارة التي أحدثته.

    رباعي الأضلاع : Quadrilateral

    في الهندسة, شكل ذو أربعة أضلاع وأربع زوايا. ورباعي الأضلاع يدعى "المنحرف" أو "المعين المنحرف" trapezium حين لا يكون بين أضلاعه ضلعان متوازيان. فإذا كان بين أضلاعه ضلعان متوازيان دعي " شبه المنحرف" Trapezoid. أما حين يكون زوجان من أضلاعه متوازيين فيدعى "متوازي الأضلاع" parallelogram.


    الرسم البياني : Graph

    رسم يمثل معطيات رقمية معينة أو يمثل العلاقة الوظيفية بين مجموعتين من الأرقام. والواقع أننا كثيرا ما نمثل ذلك من طريق الجداول أو من طريق المعادلات. ولكن الرسوم البيانية كثيرا ما تفضل على الجداول والمعادلات ليسرها ووضوحها, فهي تبصرنا - بمجرد النظر الخاطف إليها - بكل ما يحاول واضعوها إبلاغنا إياه بواسطتها. والرسوم البيانية ضروب متعددة أكثرها صيرورة الرسم البياني القضيبي Bar graph , والرسم البياني منــكسر الخط Broken - line graph , والرسم البياني الدائري Circular Graph.
    الرياضيات : Mathematics

    دراسة الكميات والعلاقات من طريق الأعداد والرموز. وتشمل الحساب (را.) الذي يعتبر أساسا لكثير من فروع الرياضيات الأخرى, والجبر (را.) وهو من أقدم فروع الرياضيات. ومن فروع الرياضيات الأخرى الهندسة (را.), وعلم المثلثات (را.).




    الرياضيات الجديدة : New Math

    اسم يطلق على طريقة جديدة في تدريس الرياضيات في المدارس الابتدائية والثانوية. وقد شاع اصطناع الرياضيات الجديدة ابتداء من الستينات من القرن العشرين, واتخذ منذئذ أشكالا مختلفة, وقدم أساسا جديدا لتحسين متواصل في طرائق التدريس. والواقع أن الرياضيات الجديدة تبدو غريبة في نظر كثير من الناس, وبخاصة آباء الطلاب, بسبب من كثرة الرموز والمصطلحات الجديدة المستخدمة فيها. ومع ذلك فإن جانبا يسيرا جدا من محتواها الرياضي هو جديد حقا. إن الاستشراف هاهنا قد يكون مختلفا أو متميزا; أما المضمون الرياضي فلم ينقح أو يوسع إلا بمقدار.


    الزاوية : Angle

    هي, في الهندسة المستوية, شكل ناشئ عن التقاء خطين مستقيمين عند نقطة. تدعى نقطة التقاء الخطين الرأس أو القمة ويدعى كل من الخطين ضلعا. تقدر قيم الزاويا المستوية بالدرجات بحيث تساوي كل درجة 1/360 من مقدار الدورة الكاملة. فإذا تعامد ضلعا الزاوية ساوت الزاوية ربع دورة كاملة أو 90 درجة, ودعيت زاوية قائمة right angle. أما الزاوية التي تزيد على 90 درجة فتدعى زاوية منفرجة obtuse angle, وأما التي تقل عن 90 درجة فتدعى زاوية حادة acute angle. وإذا كان مجموع زاويتين 90 درجة دعيتا زاويتين متتامتين complementary anغlesوإذا كان مجموعهما 180 درجة دعيتا زاويتين متكاملتين supplementary angles. وفي الهندسة الفراعية تنشأ الزاوية عن تقاطع مستويين أو أكثر.
    FARAG FARID
    FARAG FARID


    عدد المساهمات : 229
    تاريخ التسجيل : 01/04/2009

    قاموس الرياضيات Empty رد: قاموس الرياضيات

    مُساهمة  FARAG FARID الأربعاء أبريل 21, 2010 7:11 am

    شكراً يا تسنيم على أهتمامك بمادة الرياضيات وأرجو من الجميع المشاركة بموضوعات تخدم المواد الدراسية
    كعمل مراجعة على وحدة معينة فى أى مادة أو شرح جزء من المادة أو وضع أسئلة فى مادة معينة
    أو الأستفسار عن درس ما ويتم الأجابة عنه من أحد مدرسي المادة وهكذا
    ولكم جميعاً كل التوفيق
    قاموس الرياضيات Icon_flower قاموس الرياضيات Icon_flower قاموس الرياضيات Icon_flower

      الوقت/التاريخ الآن هو الخميس نوفمبر 14, 2024 6:20 pm